热调制技术是全二维气相色谱中使用较多的种调制方式,在第根色谱柱和第二根色谱柱之间以固定频率反复施加高温和低温,使维的馏出物在该段位置产生周期性的冷聚和释放,从而实现对维峰的调制过程。热调制技术相对于气流调制,调制效果更好,分辨率更高,而且载气流量保持不变,适合连接质谱检测器,另外冷聚过程中可以对分析物进行浓缩,灵敏度也有所提高。热调制技术已经成为应用广泛的种全二维气相色谱调制方法。
目前的热调制技术经历了系列的技术革新。当时是在根石英毛细柱上利用导电涂料的电阻加热和自然冷却来完成调制过程。由于导电涂料反复加热后容易剥落,而且自然冷却速度较慢,这种阻热式的调制方式被淘汰,但它却奠定了当今经典的两热调制的技术基础。
上世纪90年代末,澳大利亚的Phillip Marriott教授发明了纵向调制冷却系统。LMCS将个移动的冷阱套在需要调制的色谱柱上,冷阱内可用液态二氧化碳对局部色谱柱进行制冷,冷阱套以外的色谱柱放置在色谱仪的炉膛内部,被炉膛加热。通过冷阱套的上下移动,对不同部位的色谱柱进行反复加热制冷从而完成调制(图1)。这种方式加热和制冷都十分快速有效,能产生非常理想的调制峰宽,大大增加了全二维气相色谱的实用性。LMCS的出现让众多色谱学者开始应用全二维气相色谱技术,发表了大量以此技术为基础的分析应用,对全二维气相色谱的发展产生了深远的影响。不过,由于LMCS的运动部件自外向内伸入炉膛,其两端存在很大的温差,因此易产生变形和失效,其长期稳定性直存在问题,终也没有商业化。不过随后发展的商业调制器均沿袭了这种思路,采用色谱仪炉膛直接加热,相比于阻热式调制器,这种方法简单稳定,可靠性大大加强,但为了在加热的炉膛内实现快速冷却,必须大量使用液态制冷剂,所以被称为制冷式热调制器。
经过系列探索与改进后,采用固定冷热喷嘴的调制器开始慢慢盛行,例如欧洲杯滚球app(中国)官方网站-正规平台分析公司的环形调制器,LECO公司的四喷嘴调制器,和ThermoScientific公司的双喷嘴调制器。这些调制器利用喷嘴喷出的冷热气体对调制柱进行加热冷却(图2),温度变化速率快,可靠性高,该技术现已实现商品化,成为目前学术界和工业界大量使用的主流热调制器。
与此同时,随着不锈钢毛细色谱柱的问世和商业化,已经消失很久的阻热式调制技术在几年前重新获得发展。其代表是美密西根大学Richard Sacks教授的研究团队和加拿大滑铁卢大学的Tadeusz Gorécki教授的研究团队。其共同特点就是长期将调制柱放置在低温环境中,以周期性的电流直接加热需要调制的不锈钢毛细柱。这种方式利用不锈钢的导电性质,不用依赖导电涂料,稳定性显著提高。而且电加热方式简单灵活,可以产生非常窄的脉冲,实现快速释放。他们两个团队在冷却系统上稍有区别。
密西根大学的调制器核心部件安装于色谱仪炉膛内,将金属毛细管浸泡在被个制冷机循环冷却的聚乙二醇液态腔体里来完成调制全过程。密西根大学的这种通过制冷机形成充足冷量的技术方案被ZOEX等公司随后纷纷采用和改进,并形成了商业化的不使用液氮的喷嘴式热调制器。但是,这些调制器仍然需要消耗大量的用于热交换的干燥的氮气或空气,并没有将全二维色谱技术真正从高端实验室或研究机构中解放出来。
滑铁卢大学的调制器核心部件初安装于炉膛之外,并利用蜗旋管冷却技术来完成调制。蜗旋管需要消耗大量的压缩空气,因此般也只能在实验室中使用。近年来,改进的调制器核心部件重新安装于炉膛之内,并利用端伸出炉膛的导热铜块来实现风冷降温。这项改进终于让人看到了不消耗任何制冷剂的曙光。但是,它也牺牲了定的调制范围,尤其是在低沸点化合物端。
无论哪种方案,只要采用不锈钢色谱柱作为调制柱,必须同时解决电的良好接触和避免在接触点产生冷点,这样才能保证正常的色谱过程。然而。这两点往往是矛盾的。因此可以看到上述两个团队终还是选择了直接或间接在炉膛内完成调制全过程,并由此在其它方面做出了牺牲。另外,不锈钢本身比熔融石英的热质量大了近四倍,因此在没有强制冷的条件下,降温速度很慢,例如滑铁卢大学的调制器,调制周期无法做到4秒以下;然而,目前全二维色谱的运行趋势是将调制周期优化在2秒到4秒之间,从而更好地保持第维的色谱分离效果和节省整体分析时间。后,不锈钢色谱调制柱必须具有不同膜厚的内部固定相才能完成对相应沸点范围化合物的调制,但是因其固定方式对良好电接触的要求,更换起来并不灵活。综上所述,采用不锈钢色谱柱电阻加热的调制器目前还有很多技术问题没有解决,在短期内难有大的突破,目前只停留在研究阶段,尚未实现商业化。
随着本世纪初微加工工艺和微机电系统(MEMS)的兴起,第个微型固态热调制器在美密西根大学诞生。它在片硅晶片上集成了微色谱柱和金属丝线,利用后者脉冲式电阻加热和块半导体制冷元件的持续冷却完成对微色谱柱的调制。这项发明由于整体设备的热质量非常微小,从而省去了制冷剂的使用,大简化了日常操作。但是由于其微机电系统和外部宏观尺寸的设备难以实现完美的无缝连接,实际性能并不理想。此外由于分析测试市场规模比较小,不足于降低微系统的开发制造成本。经过多年的研发,该技术始终不能商业化。借鉴了LMCS移动式系统和微型热调制器的优势后,Guan和Xu将它们以崭新的方式结合起来,发明种不依赖微加工工艺但又能成功使用半导体制冷的固态热调制器。这种调制器在整体上摈弃了业界直流行的对色谱仪炉膛加热的依赖,构建了独立的冷却与加热环节以实现炉膛外的完全调制。由于不再需要大量的制冷以抵消炉膛的加热,另外冷却与加热区域进步在空间上相互隔绝,大大增加了制冷效率。这样只依靠半导体制冷就能实现优异的调制效果,完全避免了制冷剂的使用。这种技术目前已经成功商业化。